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Introduction

The concept of probability

has many aspects;

related to beliefs and credences;

related to the world.
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Introduction

Our focus:

Probabilistic laws of nature.

Those laws of nature that involve probabilities in their
statements.

Examples: probabilistic laws in quantum mechanics and
statistical mechanics.
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Introduction

We develop a new conception of probability, and thereby develop a
new approach to probabilistic laws.

Key: algorithmic randomness.

Relations to conceptual issues about probability:

scientific explanation,

randomness,

independence,

typicality,

objective probability,

Principal Principle,

perhaps Cournot’s Principle.
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Introduction

Some background:

Jeff: foundations of quantum mechanics

Eddy: laws of nature; typicality; Cournot’s principle.
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Introduction

Probabilistic laws, as they are usually understood, involve a variety
of underdetermination.

A simple example:

Repeated tosses of a coin

It produces: an infinite ω-sequence of results 〈r1, r2, . . .〉.
Each possible sequence describes a possible world.

Let ΩL be the set of all such worlds that accord with a law L.
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Introduction

Consider the probabilistic law L:

Probabilistic Law L

Each element in the ω-sequence of coin tosses 〈r1, r2, . . .〉 is
determined independently and with an unbiased probability of
heads and tails.

One might think of L as descriptive of a fundamentally random
process, something like starting with a sequence of spin-1/2
particles each in a eigenstate of z-spin, then measuring their
x-spins in turn.
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Introduction

As probabilistic laws are typically understood, ΩL is the set of
all ω-sequences.

L does not rule out any world.

A world compatible with L might exhibit any limiting relative
frequency, or no limiting relative frequency at all.

Examples: the all-heads world; a world with 1/3 heads.

Even the full history of a world will fail to determine L, in a
continuous cardinality of cases.

Even ΩL, the full set of worlds compatible with L, does
nothing to determine L over any other probabilistic law.
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Introduction

The underdetermination is closely related to empirical coherence.

Empirical Coherence

A physical law is empirically coherent only if it is always in
principle possible for one to have empirical support for the law if
the law is in fact true.

cf: Barrett (1996), (1999) and (2020)
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Introduction

If a law is empirically incoherent....

It may be impossible to learn that the law is true with even
complete evidence.

There are ω-sequences that might occur but would provide no
empirical evidence whatsoever for accepting L.

Example: the all-heads sequence.

In such worlds one would never have any empirical support for
accepting the correct probabilistic law even with full evidence.

There is a continuous cardinality of such worlds.
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Introduction

We suggest: one can get a tighter fit between probabilistic laws
and empirical evidence.

How? By appealing to a stronger conception of probability and a
correspondingly stronger variety of probabilistic laws.

Probabilistic Law L?

The ω-sequence of coin tosses 〈r1, r2, . . .〉 is random with unbiased
relative frequencies of heads and tails.

Here being random is a property of the ω-sequence.
(Outcome randomness)

The notion should be defined.
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Introduction

The notions of randomness we consider here are algorithmic.

... defined in terms of statistical tests that determine whether
an ω-sequence exhibits any specifiable pattern.

Each sequence will either pass or fail a particular test for
being random.
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Introduction

ΩL?ΩL

ML

While L is compatible with all ω-sequences of results, L? is
not.

Let ΩL? be the set of all worlds that accord with the law L?.

All worlds in ΩL? exhibit the random unbiased sequences
stipulated by L?.
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Introduction

ΩL?ΩL

ML

ΩL? contains no maverick worlds

Maverick worlds are those that exhibit a specifiable pattern or
fail to exhibit the right relative frequencies or fail to exhibit
any relative frequencies at all.
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Introduction

If L? is true, then any physically possible world fully
determines L?.

A L? law is empirically coherent in the relevant sense, while a
L law is not.
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Introduction

A nice implication:

No special probabilistic background assumptions or priors
regarding what world one inhabits are required for successful
inquiry.

(The Principal Principle and Cournot’s Principle are
sometimes used for this purpose.)

An inquirer in any physically possible world might determine
the truth of L? by considering the results of coin tosses.

With complete evidence, one will surely learn it up to an
equivalence class of computationally indistinguishable laws.

A probabilistic law like L? is much like a deterministic law in
this way.
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Introduction

Plan for this talk:

1 We define the randomness constraint that every L? world
must satisfy.

2 We consider two understandings of a L? law.

3 We discuss the costs and benefits.

4 We argue that the second understanding has salient virtues.
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Randomness Constraints

Let’s define the randomness constraint.

We need a test of randomness for ω-sequences.

A random sequence of tosses with an unbiased coin should
exhibit an even relative frequency of heads and tails in the
limit.

But this is not sufficient!

Example of a non-random sequence: an alternating sequence
of heads and tails.
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Randomness Constraints

There are three further conditions for an unbiased random
sequence:

1 patternless;

2 generic / typical;

3 not allowing for a successful fair betting strategy.

cf: Li and Vitányi (2008), A. Dasgupta (2011), Barrett and
Huttegger (2021), Eagle (2021).
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Randomness Constraints

Let’s start with the first condition: an ω-sequence is random only
if it exhibits no finitely specifiable regularity.

Algorithmic tests are helpful for characterizing “patternless.”

First pass: an ω-sequence is patternless, and hence random, if
and only if there is no finite-length algorithm that produces
the sequence.

A finite-length algorithm would express a regularity, something
that one might even think of as a deterministic law.
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Randomness Constraints

But the first-pass criterion is insufficient:

Example: a repeated three-block pattern of one thousand
heads followed by one thousand tails followed by one thousand
random and unbiased heads and tails.

The relative frequency of heads and tails in the full sequence
is unbiased.

The sequence cannot be represented by a finite-length
algorithm.

But the sequence is not random!

We can design a gambling strategy and enjoy unbounded
wealth.
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Randomness Constraints

Problem: there is no bound on the amount that a finite initial
segment of this sequence might be compressed.

One might write a very short program that takes advantage of
the regularity.

One can eventually shorten the algorithmic representation of
finite initial segments of the sequence by more than any
constant c .

This observation provides the key idea behind
Kolmogorov-Chaitin randomness.
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Randomness Constraints

Kolmogorov-Chaitin Randomness

An ω-sequence is Kolmogorov-Chaitin random if and only if there
is a constant c such that all finite initial segments are
c-incompressible (by a prefix-free Turing machine).

An initial segment is c-incompressible if and only if it is not
representable by an algorithm that is c shorter than the initial
segment.

A prefix-free Turing machine is a universal Turing machine
that is self-delimiting and hence can read its input in one
direction without knowing what, if anything, comes next.
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Randomness Constraints

Let’s turn to the second condition regarding “generic/typical.”

First-pass: an ω-sequence x is random only if x satisfies all
typicality properties.

Too strong!

Being different from x is a typicality property.

The first-pass criterion implies that no ω-sequence is random!

We need to restrict the class of typicality properties.

Martin-Löf (1966) offers a remarkably simple and satisfactory
solution.
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Randomness Constraints

Martin-Löf Randomness

An ω-sequence is Martin-Löf random if and only if it belongs to
every effective full-measure set, i.e. it belongs to no effective
measure-zero set.

Martin-Löf: a set E ⊂ 2ω is effective measure-zero iff there is
a uniformly effective sequence of open sets, G1,G2, ... such
that, for all n, E ⊂ Gn and µ(Gn) < 1/n.

Uniformly effective open: the entire sequence of open sets is
determined by a single program.

cf: A. Dasgupta 2011.
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Randomness Constraints

Surprisingly, the two seemingly different definitions are equivalent.

Schnorr’s Theorem

An ω-sequence is Martin-Löf random if and only if it is
Kolmogorov-Chaitin random.

Moreover, they are also equivalent to the betting-criterion, i.e. no
computably enumerable martingale succeeds on the ω-sequence.

Upshot: Martin-Löf randomness is simple and natural, and very
surprisingly it is equivalent to seemingly different characterizations
of randomness.

cf: Church-Turing thesis; Martin-Löf-Chaitin thesis.
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Randomness Constraints

We use Martin-Löf randomness to specify the law L? as a
constraint on the set of physically possible worlds:

Probabilistic Law L?ML

The ω-sequence of coin tosses 〈r1, r2, . . .〉 is Martin-Löf random
with unbiased relative frequencies of heads and tails.

Here all of the worlds in ΩL?ML are random with well-defined
unbiased relative frequencies.
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We use Martin-Löf randomness to specify the law L? as a
constraint on the set of physically possible worlds:

Probabilistic Law L?ML

The ω-sequence of coin tosses 〈r1, r2, . . .〉 is Martin-Löf random
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Randomness Constraints

Hence,

a non-dogmatic inquirer will surely infer unbiased relative
frequencies in the limit;

inasmuch as all initial segments of her data will be
c-incompressible, she will have as good of evidence as possible
that the data are patternless and hence randomly distributed.
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Randomness Constraints

Martin-Löf randomness is not the only way that one might
characterize a probabilistic coin-toss law.

There are other algorithmic notions of randomness to choose
from.

Schnorr randomness is a closely-related notion with many of
the same virtues.
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Randomness Constraints

A Schnorr test is a special kind of Martin-Löf test, requiring a
more stringent definition of “effective measure-zero.”

A Schnorr test is a Martin-Löf test where the measures µ(Un)
are themselves uniformly computable. A class C ⊂ 2ω is
Schnorr null if there is a Schnorr test {Un}n∈ω such
that C ⊆

⋂
n Un. And a sequence S ∈ 2ω is Schnorr random if

and only if {S} is not Schnorr null.
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more stringent definition of “effective measure-zero.”
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Randomness Constraints

As with Martin-Löf randomness, we might use the notion of
Schnorr randomness to specify a probabilistic constraining law:

Probabilistic Law L?S

The ω-sequence of coin tosses 〈r1, r2, . . .〉 is Schnorr random with
unbiased relative frequencies of heads and tails.
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Randomness Constraints

ΩL?ML ΩL?SΩL

Since there are sequences that are Schnorr random but not
Martin-Löf random, L?ML and L?S are different laws.
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Randomness Constraints

L?ML and L?S are different laws.

But they are in a strong sense empirically equivalent.

No effective procedure would determine whether a particular
sequence is Martin-Löf random or Schnorr random but not
Martin-Löf random. (Barrett and Huttegger 2021)

If one is limited to Turing-strength computation, one would
never be able to distinguish between L?ML and L?S no matter
what empirical evidence one had.
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Randomness Constraints

Moving from a standard probabilistic law to a L? law eliminates one
variety of empirical underdetermination, but it reveals two others.

1 One should already expect law L? to be empirically
indistinguishable from L, insofar as one expects a sequence of
coin tosses governed by a traditional probabilistic law L to be
such that one can detect no discernible pattern.

2 One will be unable to distinguish between different versions of
L? like L?ML and L?S , insofar as one is limited to
Turing-strength computations.

Since Martin-Löf randomness has the sort of properties we want
and as it is arguably the standard algorithmic notion (Dasgupta
2011), we shall understand L? as L?ML.
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Since Martin-Löf randomness has the sort of properties we want
and as it is arguably the standard algorithmic notion (Dasgupta
2011), we shall understand L? as L?ML.

J.A. Barrett and E.K. Chen Algorithmic Randomness and Probabilistic Laws



Recap

We’ve defined what it means to be a L? law.

Tighter fit between the law and its corresponding set of
possible worlds.

Quite different from a L law.
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The Nature of Laws

What kind of physical law is L??

And how does it govern the world?
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The Nature of Laws

One might think of L? in one of these two ways:

a generative chance? law;

a probabilistic? constraining law.

These are meant to be non-Humean laws. Later, we will discuss
the implications for Humeanism.
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The Nature of Laws

As a generative chance? law:

L? tells us that each toss is generated by unbiased chances?,

where a chance? process behaves just like an ordinary chance
process...

...except that it can never produce an infinite sequence that
fails to be Martin-Löf random or fails to exhibit well-defined
relative frequencies.
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The Nature of Laws

As a result, a chance? process involves a subtle violation of
independence.

The sequence of tosses will pass every finitely specifiable test
for statistical independence.

But since the full sequence must satisfy the constraint
imposed by the law, a chance? process is holistically
constrained.
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The Nature of Laws

The constraint is not felt on any finite set of tosses, nor is it
discoverable by effective means.

But it does require that a relationship hold between the full
sequence of tosses that is generated by the process in the
limit.

This interdependence between outcomes may be incompatible
with the usual intuitions behind wanting a generative law.

It may also be incompatible with how causal explanation
works more generally.
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The Nature of Laws

A more natural interpretation:

L? can be regarded as a law that governs by constraining the
entire history of the world—in this case, the full ω-sequence of
outcomes.

L? tells us which sequences of outcomes are physically
possible, namely those that satisfy the frequency constraint
and the randomness constraint imposed by the law.

It meshes well with Chen and Goldstein’s (2022) minimal
primitivism account (MinP), according to which laws are
certain primitive facts that govern the world by constraining
the physical possibilities of the entire spacetime and its
contents.
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the physical possibilities of the entire spacetime and its
contents.
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Understood this way, L? addresses problems encountered by both
non-Humean and Humean accounts of laws.
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The Nature of Laws

On non-Humean governing accounts of laws, there is a puzzle:

Precisely how do probabilistic laws govern?

According to the standard view, probabilistic laws do not rule
out any world.

Instead, they merely assign some numbers between zero and
one to (measurable) subsets in the space of all ω-sequences.

This raises a puzzle: what do these numbers between zero
and one represent in physical reality?
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The Nature of Laws

Some non-Humeans appeal to gradable notions...

such as ”propensities” (Maudlin 2007, p.20) or ”probabilities
of necessitation” (Armstrong 1983, p.172).

Suppose a probabilistic law assigns a 0.2 probability to the
next outcome being heads.

“The chance setup has a 0.2 propensity to bring about a
heads-outcome in the next toss.”

“The current state of affairs necessitates the state of affairs of
a heads-outcome to 0.2 probability.”

One might make sense of non-gradable notions of physical
possibility and impossibility. But gradable notions such as
propensities and degrees of necessitation are much less clear.
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The Nature of Laws

In contrast, probabilistic laws, such as L?, can be viewed as a
special class of constraining laws.

They constrain what is physically possible by ruling out
certain sequences of outcomes.

Which worlds are ruled out?

Those that fail either the frequency constraint or the
randomness constraint.

We can do away with gradable notions such as propensities or
probabilities of necessitation altogether.

In their place, we require only non-gradable notions of
physical possibilities and impossibilities.
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The Nature of Laws

Consider MinP as a non-Humean example.

We can now employ a single primitive relation, namely
constraining.

Both probabilistic and non-probabilistic types of laws govern
by constraining what is physically possible.

The way that L? constrains the world is not so different from
that of F = ma.

L? constrains the physical possibilities to be all and only the
non-maverick worlds.

F = ma constrains the physical possibilities to be all and only
the solutions of F = ma.

In this way, L? removes a major obstacle to a unified understanding
of probabilistic and non-probabilistic laws.
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The Nature of Laws

Let’s turn to Humeanism.

Humeans may also find it useful to adopt L?, for two reasons.
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The Nature of Laws

(1) It is relevant to the issue of the Big Bad Bug (Lewis 1986,
pp.xiv-xvi).

Lewis: the Principal Principle and Humean supervenience lead
to a contradiction.

Certain histories of the Humean mosaic, called undermining
histories, are assigned, according to the Principal Principle,
non-zero probability, conditionalized on some probabilistic
theory T being the best system.

However, they are assigned, according to Humean
supervenience, zero probability, because T would not be the
best system had any of its undermining histories been actual.
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The Nature of Laws

What sort of history would count as undermining?

wrong limiting frequencies

no limiting frequencies

containing patterns that can be summarized by a simpler
system, such as a deterministic law in the case of the
alternating heads-tails sequence.

Undermining histories, then, are exactly the histories of maverick
worlds, as they lack the frequency or randomness patterns
exemplified by typical sequences of the standard probabilistic law.
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The Nature of Laws

?-laws rules out maverick worlds.

If maverick worlds are physically impossible, then there are no
physically possible undermining histories that can be used to
derive the contradiction.

The Big Bad Bug is eliminated!

Inasmuch as restricting to ?-laws is also motivated by
considerations of underdetermination and empirical coherence,
a Humean may find this solution particularly natural.
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The Nature of Laws

(2) Adopting ?-laws can avoid appealing to fit as a criterion in the
best-system analysis of probabilistic laws, which allows Humeans to
bypass difficulties with how to characterize this notion. (cf. Elga
2004)
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The Nature of Laws

Given an ω-sequence, there is much underdetermination
among standard probabilistic laws such as L,

one needs something like fit to choose the winning best
system.

Informativeness as the quantity of worlds being excluded does
not distinguish among probabilistic laws like L.

Different candidates compatible with the same set of worlds.
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The Nature of Laws

In contrast, there is much less underdetermination among
probabilistic laws like L?.

If we consider a spectrum of different probabilistic statements
like L? that differ, say, in their specifications of the relative
frequencies in the ω-sequence,

then at most one of them is compatible with the ω-sequence,

thus at most one of them is an axiom in the best system of
that ω-sequence.

The best system analysis of L? is much like that of
F = G m1m2

r2
.
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The Nature of Laws

Given any Humean mosaic, one needs criteria such as
simplicity and informativeness, but one does not need the
statistical criterion of fit, to determine the best system.

The usual problems associated with fit would not arise for
such Humeans!
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Discussion

A L? law may be thought of as either a generative chance? law or
a probabilistic? constraining law.

The notions of chance? and probability? are subtly different from
traditional chance or probability.
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Discussion: Independence

The results of coin tosses on L? satisfy every computable test
for independence and will hence appear to be statistically
independent.

One might say that the results are probabilistically?

independent.

But inasmuch as some sequences are impossible, there is also
a sense in which the results of tosses in this full ω-sequence
are interdependent.
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Discussion: Independence

To understand L? as a generative chance? law, one would need
to allow for a holistic causal structure that guarantees random
sequences with unbiased relative frequencies in the limit.

Depending on one’s commitments regarding causal
explanation, this may lead one to favor understanding L? as a
probabilistic? constraining law.

If one gives up on a generative chance? law, one is left with a
useful option for both proponents of governing-law accounts
and Humeans.
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Discussion: Empirical Underdetermination

chance? and probability? depend on a choice of a particular
standard of algorithmic randomness.

Choice between Martin-Löf and Schnorr randomness.

A computational sort of empirical underdetermination.
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Discussion: Empirical Underdetermination

Still, ?-laws also help to eliminate some forms of empirical
underdetermination.

Unlike traditional probabilistic laws but very much like
deterministic laws like F = ma and F = G m1m2

r2
, one will

surely learn L? on complete evidence in every physically
possible world.
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Discussion: Empirical Underdetermination

In contrast, if L is the true law, there will be a continuous
cardinality of maverick worlds such that, if one were to inhabit
any of them, one could never learn L from the results of the
coin tosses.

On the usual approach to thinking about laws, one needs
special background assumptions to overcome this difficulty.

One needs to argue that inhabiting a maverick world of the
true law is sufficiently unlikely or atypical that one has
rational justification for simply ignoring the possibility.

One needs to know that the world one inhabits, and hence the
statistical nature of the sequence of records that one has in
fact recorded, is typical or very likely given the true law.
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Discussion: Empirical Underdetermination

If an agent is simply presented with a sequence of coin-toss
records and knows nothing more than that she inhabits a
physically possible world...

...she cannot infer that the sequence exhibits typical statistical
properties given the true law.

Such an inference requires her to appeal to a background
assumption like the Principal Principle or Cournot’s Principle.

While such assumptions may be warranted given one’s other
commitments, they are not required for empirical coherence if
one restricts one’s hypotheses to ?-laws.
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Conclusion

We have used algorithmic randomness to characterize two
types of probabilistic laws:

a generative chance? law;
a probabilistic? constraining law.

We have argued that ?-laws provide a novel way of
understanding probabilities and chances, and help to address
one variety of empirical underdetermination, but they also
reveal other varieties that have been underappreciated.

For all we know, our world might be characterized by a
traditional probabilistic law or a ?-law.
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Conclusion

The notion of a probabilistic? constraining law has advantages
over that of a generative chance? law.

It meshes well with the holistic character of the randomness
and relative frequency constraints, directly supports a unified
governing account of non-Humean laws, and provides
independently motivated solutions to issues in the Humean
best-system account.

Both notions are worthy of study and may lead to new ideas
concerning the nature of laws.
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Thank you for your attention!
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